8.5 Use Properties of Trapezoids and Kites

Before

You used properties of special parallelograms.

Now

You will use properties of trapezoids and kites.

Why?

So you can measure part of a building, as in Example 2.

Key Vocabulary

- trapezoid bases, base angles, legs
- isosceles trapezoid
- midsegment of a trapezoid
- kite

A **trapezoid** is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the **bases**.

A trapezoid has two pairs of **base angles**. For example, in trapezoid ABCD, $\angle A$ and $\angle D$ are one pair of base angles, and $\angle B$ and $\angle C$ are the second pair. The nonparallel sides are the **legs** of the trapezoid.

S(2, 4)

T(4, 2)

R(0,3)

0(0,0)

EXAMPLE 1

Use a coordinate plane

Show that ORST is a trapezoid.

Solution

Compare the slopes of opposite sides.

Slope of
$$\overline{RS} = \frac{4-3}{2-0} = \frac{1}{2}$$

Slope of
$$\overline{OT} = \frac{2-0}{4-0} = \frac{2}{4} = \frac{1}{2}$$

The slopes of \overline{RS} and \overline{OT} are the same, so $\overline{RS} \parallel \overline{OT}$.

Slope of
$$\overline{ST} = \frac{2-4}{4-2} = \frac{-2}{2} = -1$$

Slope of
$$\overline{OR} = \frac{3-0}{0-0} = \frac{3}{0}$$
, which is undefined.

The slopes of \overline{ST} and \overline{OR} are not the same, so \overline{ST} is not parallel to \overline{OR} .

▶ Because quadrilateral *ORST* has exactly one pair of parallel sides, it is a trapezoid.

GUIDED PRACTICE

for Example 1

- **1. WHAT IF?** In Example 1, suppose the coordinates of point *S* are (4, 5). What type of quadrilateral is *ORST*? *Explain*.
- **2.** In Example 1, which of the interior angles of quadrilateral *ORST* are supplementary angles? *Explain* your reasoning.

ISOSCELES TRAPEZOIDS If the legs of a trapezoid are congruent, then the trapezoid is an **isosceles trapezoid**.

THEOREMS

For Your Notebook

THEOREM 8.14

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid *ABCD* is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

Proof: Ex. 37, p. 548

THEOREM 8.15

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid *ABCD* is isosceles.

Proof: Ex. 38, p. 548

THEOREM 8.16

A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid *ABCD* is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Proof: Exs. 39 and 43, p. 549

EXAMPLE 2 Use prope

Use properties of isosceles trapezoids

ARCH The stone above the arch in the diagram is an isosceles trapezoid. Find $m \angle K$, $m \angle M$, and $m \angle J$.

Solution

- **STEP 1** Find $m \angle K$. JKLM is an isosceles trapezoid, so $\angle K$ and $\angle L$ are congruent base angles, and $m \angle K = m \angle L = 85^{\circ}$.
- **STEP 2** Find $m \angle M$. Because $\angle L$ and $\angle M$ are consecutive interior angles formed by \overrightarrow{LM} intersecting two parallel lines, they are supplementary. So, $m \angle M = 180^{\circ} 85^{\circ} = 95^{\circ}$.
- **STEP 3** Find $m \angle J$. Because $\angle J$ and $\angle M$ are a pair of base angles, they are congruent, and $m \angle J = m \angle M = 95^{\circ}$.
- \blacktriangleright So, $m \angle I = 95^{\circ}$, $m \angle K = 85^{\circ}$, and $m \angle M = 95^{\circ}$.

READ VOCABULARY

The midsegment of a trapezoid is sometimes called the *median* of the trapezoid.

MIDSEGMENTS Recall that a midsegment of a triangle is a segment that connects the midpoints of two sides of the triangle. The **midsegment of a trapezoid** is the segment that connects the midpoints of its legs.

The theorem below is similar to the Midsegment Theorem for Triangles.

THEOREM

For Your Notebook

THEOREM 8.17 Midsegment Theorem for Trapezoids

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

If \overline{MN} is the midsegment of trapezoid ABCD, then $\overline{MN} \parallel \overline{AB}$, $\overline{MN} \parallel \overline{DC}$, and $MN = \frac{1}{2}(AB + CD)$.

Justification: Ex. 40, p. 549

Proof: p. 937

EXAMPLE 3

Use the midsegment of a trapezoid

In the diagram, \overline{MN} is the midsegment of trapezoid *PQRS*. Find MN.

Solution

Use Theorem 8.17 to find MN.

$$MN=rac{1}{2}(PQ+SR)$$
 Apply Theorem 8.17.
$$=rac{1}{2}(\mathbf{12}+\mathbf{28})$$
 Substitute 12 for PQ and 28 for XU .
$$=20$$
 Simplify.

▶ The length *MN* is 20 inches.

1

GUIDED PRACTICE

for Examples 2 and 3

In Exercises 3 and 4, use the diagram of trapezoid EFGH.

- **3.** If *EG* = *FH*, is trapezoid *EFGH* isosceles? *Explain*.
- **4.** If $m \angle HEF = 70^{\circ}$ and $m \angle FGH = 110^{\circ}$, is trapezoid *EFGH* isosceles? *Explain*.

5. In trapezoid JKLM, $\angle J$ and $\angle M$ are right angles, and JK = 9 cm. The length of the midsegment \overline{NP} of trapezoid JKLM is 12 cm. Sketch trapezoid JKLM and its midsegment. Find ML. Explain your reasoning.

KITES A **kite** is a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

THEOREMS

For Your Notebook

THEOREM 8.18

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral *ABCD* is a kite, then $\overline{AC} \perp \overline{BD}$.

Proof: Ex. 41, p. 549

THEOREM 8.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral *ABCD* is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \not\cong \angle D$.

Proof: Ex. 42, p. 549

EXAMPLE 4

Apply Theorem 8.19

Find $m \angle D$ in the kite shown at the right.

Solution

By Theorem 8.19, DEFG has exactly one pair of congruent opposite angles. Because $\angle E \not\cong \angle G$, $\angle D$ and $\angle F$ must be congruent. So, $m\angle D = m\angle F$. Write and solve an equation to find $m\angle D$.

$$m \angle D + m \angle F + 124^{\circ} + 80^{\circ} = 360^{\circ}$$

Corollary to Theorem 8.1

$$m \angle D + m \angle D + 124^{\circ} + 80^{\circ} = 360^{\circ}$$

Substitute $m \angle D$ for $m \angle F$.

$$2(m\angle D) + 204^{\circ} = 360^{\circ}$$

Combine like terms.

$$m \angle D = 78^{\circ}$$

Solve for $m \angle D$.

Animatea Geometry at classzone.com

GUIDED PRACTICE

for Example 4

6. In a kite, the measures of the angles are $3x^{\circ}$, 75° , 90° , and 120° . Find the value of x. What are the measures of the angles that are congruent?

8.5 EXERCISES

HOMEWORK KEY

on p. WS1 for Exs. 11, 19, and 35

★ = STANDARDIZED TEST PRACTICE Exs. 2, 16, 28, 31, and 36

SKILL PRACTICE

- **1. VOCABULARY** In trapezoid PQRS, $\overline{PQ} \parallel \overline{RS}$. Sketch PQRS and identify its bases and its legs.
- 2. * WRITING Describe the differences between a kite and a trapezoid.

EXAMPLES 1 and 2

on pp. 542–543 for Exs. 3–12 **COORDINATE PLANE** Points A, B, C, and D are the vertices of a quadrilateral. Determine whether ABCD is a trapezoid.

- **3.** A(0, 4), B(4, 4), C(8, -2), D(2, 1)
- **4.** A(-5, 0), B(2, 3), C(3, 1), D(-2, -2)
- **5.** A(2, 1), B(6, 1), C(3, -3), D(-1, -4)
- **6.** A(-3, 3), B(-1, 1), C(1, -4), D(-3, 0)

FINDING ANGLE MEASURES Find $m \angle J$, $m \angle L$, and $m \angle M$.

REASONING Determine whether the quadrilateral is a trapezoid. *Explain*.

EXAMPLE 3

on p. 544 for Exs. 13–16 **FINDING MIDSEGMENTS** Find the length of the midsegment of the trapezoid.

13. 18 M

- **16.** ★ **MULTIPLE CHOICE** Which statement is not always true?
 - (A) The base angles of an isosceles trapezoid are congruent.
 - **B** The midsegment of a trapezoid is parallel to the bases.
 - **©** The bases of a trapezoid are parallel.
 - **D** The legs of a trapezoid are congruent.

EXAMPLE 4

on p. 545 for Exs. 17–20 **17. ERROR ANALYSIS** *Describe* and correct the error made in finding $m \angle A$.

ANGLES OF KITES *EFGH* is a kite. Find $m \angle G$.

18.

(19.)

20.

DIAGONALS OF KITES Use Theorem 8.18 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.

21.

22.

23.

24. ERROR ANALYSIS In trapezoid ABCD, \overline{MN} is the midsegment. *Describe* and correct the error made in finding DC.

W ALGEBRA Find the value of x.

25.

26.

27.

- **28.** \star **SHORT RESPONSE** The points M(-3, 5), N(-1, 5), P(3, -1), and Q(-5, -1) form the vertices of a trapezoid. Draw MNPQ and find MP and NQ. What do your results tell you about the trapezoid? *Explain*.
- **29. DRAWING** In trapezoid JKLM, $\overline{JK} \parallel \overline{LM}$ and JK = 17. The midsegment of JKLM is \overline{XY} , and XY = 37. Sketch JKLM and its midsegment. Then find LM.
- **30. RATIOS** The ratio of the lengths of the bases of a trapezoid is 1:3. The length of the midsegment is 24. Find the lengths of the bases.
- **31.** \bigstar **MULTIPLE CHOICE** In trapezoid *PQRS*, $\overline{PQ} \parallel \overline{RS}$ and \overline{MN} is the midsegment of *PQRS*. If $RS = 5 \cdot PQ$, what is the ratio of *MN* to *RS*?
 - **A** 3:5
- **B** 5:3
- **©** 2:1
- **(D)** 3:1
- **32. CHALLENGE** The figure shown at the right is a trapezoid with its midsegment. Find all the possible values of *x*. What is the length of the midsegment? *Explain*. (The figure may not be drawn to scale.)

33. REASONING *Explain* why a kite and a general quadrilateral are the only quadrilaterals that can be concave.

PROBLEM SOLVING

EXAMPLES 3 and 4

on pp. 544-545 for Exs. 34-35

34. FURNITURE In the photograph of a chest of drawers, \overline{HC} is the midsegment of trapezoid ABDG, \overline{GD} is the midsegment of trapezoid HCEF, AB = 13.9 centimeters, and GD = 50.5 centimeters. Find HC. Then find FE.

@HomeTutor for problem solving help at classzone.com

(35.) **GRAPHIC DESIGN** You design a logo in the shape of a convex kite. The measure of one angle of the kite is 90°. The measure of another angle is 30°. Sketch a kite that matches this description. Give the measures of all the angles and mark any congruent sides.

@HomeTutor for problem solving help at classzone.com

36. ★ EXTENDED RESPONSE The bridge below is designed to fold up into an octagon shape. The diagram shows a section of the bridge.

- a. Classify the quadrilaterals shown in the diagram.
- **b.** As the bridge folds up, what happens to the length of \overline{BF} ? What happens to $m \angle BAF$, $m \angle ABC$, $m \angle BCF$, and $m \angle CFA$?
- **c.** Given $m \angle CFE = 65^{\circ}$, find $m \angle DEF$, $m \angle FCD$, and $m \angle CDE$. Explain.

- 37. **PROVING THEOREM 8.14** Use the diagram and the auxiliary segment to prove Theorem 8.14. In the diagram, \overline{EC} is drawn parallel to \overline{AB} .
 - **GIVEN** \triangleright *ABCD* is an isosceles trapezoid, $\overline{BC} \parallel \overline{AD}$

PROVE $\blacktriangleright \angle A \cong \angle D, \angle B \cong \angle BCD$

Hint: Find a way to show that $\triangle ECD$ is an isosceles triangle.

- **38. PROVING THEOREM 8.15** Use the diagram and the auxiliary segment to prove Theorem 8.15. In the diagram, \overline{JG} is drawn parallel to \overline{EF} .
 - **GIVEN** \triangleright *EFGH* is a trapezoid, $\overline{FG} \parallel \overline{EH}$, $\angle E \cong \angle H$

PROVE \triangleright *EFGH* is an isosceles trapezoid.

Hint: Find a way to show that $\triangle JGH$ is an isosceles triangle.

39. PROVING THEOREM 8.16 Prove part of Theorem 8.16.

GIVEN
$$\blacktriangleright JKLM$$
 is an isosceles trapezoid. $\overline{KL} \parallel \overline{JM}, \overline{JK} \cong \overline{LM}$

PROVE
$$ightharpoonup \overline{JL} \cong \overline{KM}$$

40. REASONING In the diagram below, \overline{BG} is the midsegment of $\triangle ACD$ and \overline{GE} is the midsegment of $\triangle ADF$. *Explain* why the midsegment of trapezoid ACDF is parallel to each base and why its length is one half the sum of the lengths of the bases.

41. PROVING THEOREM 8.18 Prove Theorem 8.18.

GIVEN
$$\blacktriangleright ABCD$$
 is a kite. $\overline{AB} \cong \overline{CB}, \overline{AD} \cong \overline{CD}$

PROVE
$$ightharpoonup \overline{AC} \perp \overline{BD}$$

42. PROVING THEOREM 8.19 Write a paragraph proof of Theorem 8.19.

GIVEN
$$ightharpoonup EFGH$$
 is a kite. $\overline{EF} \cong \overline{GF}, \overline{EH} \cong \overline{GH}$

PROVE
$$\triangleright \angle E \cong \angle G, \angle F \not\cong \angle H$$

Plan for Proof First show that $\angle E \cong \angle G$. Then use an indirect argument to show that $\angle F \not\cong \angle H$: If $\angle F \cong \angle H$, then *EFGH* is a parallelogram. But opposite sides of a parallelogram are congruent. This result contradicts the definition of a kite.

43. CHALLENGE In Exercise 39, you proved that part of Theorem 8.16 is true. Write the other part of Theorem 8.16 as a conditional statement. Then prove that the statement is true.

MIXED REVIEW

44. Place a right triangle in a coordinate plane in a way that is convenient for finding side lengths. Assign coordinates to each vertex. (p. 295)

Use the diagram to complete the proportion. (p. 449)

45.
$$\frac{AB}{AC} = \frac{?}{AB}$$

46.
$$\frac{AB}{BC} = \frac{BD}{?}$$

PREVIEW

Prepare for Lesson 8.6 in Exs. 47–48. Three of the vertices of $\square ABCD$ are given. Find the coordinates of point D. Show your method. (p. 522)

47.
$$A(-1, -2)$$
, $B(4, -2)$, $C(6, 2)$, $D(x, y)$

48.
$$A(1, 4), B(0, 1), C(4, 1), D(x, y)$$